News

AddToAny

Google+ Facebook Twitter Twitter

Targeting the viral RNA genome

Development of vaccines against SARS-CoV-2 has been rapid, but the rise of variants forces scientists to frequently modify treatments.

Researchers have now developed a system that directly targets and degrades the viral RNA genome, reducing infection in mice. The method could be adapted to fight off many viruses, as well as treat various diseases, they claimed.

Vaccines and antiviral drugs typically target proteins critical to viral infection and replication. This targeting induces evolutionary pressure for the virus to mutate, however, reducing the effectiveness of existing treatments and requiring development of new vaccines and drugs. To get around this issue, the researchers turned to targeting highly conserved structures within the viral RNA genome.

The team used pyridostatin (PDS), which binds to G-quadruplex (G4) RNA structures, and MTDB, which binds to betacoronaviral pseudoknots, as the RNA-binding molecules.

The researchers then appended each compound with a flexible linker and imidazole and called these molecules proximity-induced nucleic acid degraders (PINADs). By bringing imidazole into close proximity to the RNA, both PINADs degraded SARS-CoV-2 RNA. The compounds were effective when tested in cells infected with SARS-CoV-2 and its alpha and delta variants.

bit.ly/41UvPy9

Image credit | iStock

Related Articles

The big question: Are we entering a new era in which mRNA vaccines are the future?

In May, AstraZeneca began the worldwide withdrawal of its COVID-19 vaccine, due to a “surplus of updated vaccines” that target new variants. Then in June, Moderna announced positive late-stage trial results for its single COVID/flu combination vaccine, mRNA-1083. On the back of this, we look at the future impact of mRNA vaccines.

Breast cancer CREDIT - Science Photolibrary- C0584739

Predicting the return of breast cancer

Dr Isaac Garcia-Murillas discusses a new blood test that can predict if breast cancer will return years before the disease shows on scans.

Restless leg syndrome - CREDIT Science Photolibrary- C0309748

Study points to potential treatments for restless leg syndrome

Scientists have discovered genetic clues to the cause of restless leg syndrome. The discovery could help identify those individuals at greatest risk of the condition and point to potential ways to treat it.

Stem cell transplant and cellular therapy lab

My lab: stem cell transplant and cellular therapy lab

Advanced Specialist Biomedical Scientist Mel Green gives a guided tour of the stem cell transplant lab at Nottingham University Hospitals.

Top